\(\int \frac {(c+d x+e x^2) (a+b x^3)^3}{x^2} \, dx\) [329]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 125 \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=-\frac {a^3 c}{x}+a^3 e x+\frac {3}{2} a^2 b c x^2+a^2 b d x^3+\frac {3}{4} a^2 b e x^4+\frac {3}{5} a b^2 c x^5+\frac {1}{2} a b^2 d x^6+\frac {3}{7} a b^2 e x^7+\frac {1}{8} b^3 c x^8+\frac {1}{9} b^3 d x^9+\frac {1}{10} b^3 e x^{10}+a^3 d \log (x) \]

[Out]

-a^3*c/x+a^3*e*x+3/2*a^2*b*c*x^2+a^2*b*d*x^3+3/4*a^2*b*e*x^4+3/5*a*b^2*c*x^5+1/2*a*b^2*d*x^6+3/7*a*b^2*e*x^7+1
/8*b^3*c*x^8+1/9*b^3*d*x^9+1/10*b^3*e*x^10+a^3*d*ln(x)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {1642} \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=-\frac {a^3 c}{x}+a^3 d \log (x)+a^3 e x+\frac {3}{2} a^2 b c x^2+a^2 b d x^3+\frac {3}{4} a^2 b e x^4+\frac {3}{5} a b^2 c x^5+\frac {1}{2} a b^2 d x^6+\frac {3}{7} a b^2 e x^7+\frac {1}{8} b^3 c x^8+\frac {1}{9} b^3 d x^9+\frac {1}{10} b^3 e x^{10} \]

[In]

Int[((c + d*x + e*x^2)*(a + b*x^3)^3)/x^2,x]

[Out]

-((a^3*c)/x) + a^3*e*x + (3*a^2*b*c*x^2)/2 + a^2*b*d*x^3 + (3*a^2*b*e*x^4)/4 + (3*a*b^2*c*x^5)/5 + (a*b^2*d*x^
6)/2 + (3*a*b^2*e*x^7)/7 + (b^3*c*x^8)/8 + (b^3*d*x^9)/9 + (b^3*e*x^10)/10 + a^3*d*Log[x]

Rule 1642

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[(d + e*x)^m*Pq*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rubi steps \begin{align*} \text {integral}& = \int \left (a^3 e+\frac {a^3 c}{x^2}+\frac {a^3 d}{x}+3 a^2 b c x+3 a^2 b d x^2+3 a^2 b e x^3+3 a b^2 c x^4+3 a b^2 d x^5+3 a b^2 e x^6+b^3 c x^7+b^3 d x^8+b^3 e x^9\right ) \, dx \\ & = -\frac {a^3 c}{x}+a^3 e x+\frac {3}{2} a^2 b c x^2+a^2 b d x^3+\frac {3}{4} a^2 b e x^4+\frac {3}{5} a b^2 c x^5+\frac {1}{2} a b^2 d x^6+\frac {3}{7} a b^2 e x^7+\frac {1}{8} b^3 c x^8+\frac {1}{9} b^3 d x^9+\frac {1}{10} b^3 e x^{10}+a^3 d \log (x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00 \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=-\frac {a^3 c}{x}+a^3 e x+\frac {3}{2} a^2 b c x^2+a^2 b d x^3+\frac {3}{4} a^2 b e x^4+\frac {3}{5} a b^2 c x^5+\frac {1}{2} a b^2 d x^6+\frac {3}{7} a b^2 e x^7+\frac {1}{8} b^3 c x^8+\frac {1}{9} b^3 d x^9+\frac {1}{10} b^3 e x^{10}+a^3 d \log (x) \]

[In]

Integrate[((c + d*x + e*x^2)*(a + b*x^3)^3)/x^2,x]

[Out]

-((a^3*c)/x) + a^3*e*x + (3*a^2*b*c*x^2)/2 + a^2*b*d*x^3 + (3*a^2*b*e*x^4)/4 + (3*a*b^2*c*x^5)/5 + (a*b^2*d*x^
6)/2 + (3*a*b^2*e*x^7)/7 + (b^3*c*x^8)/8 + (b^3*d*x^9)/9 + (b^3*e*x^10)/10 + a^3*d*Log[x]

Maple [A] (verified)

Time = 1.51 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.88

method result size
default \(-\frac {a^{3} c}{x}+a^{3} e x +\frac {3 a^{2} b c \,x^{2}}{2}+a^{2} b d \,x^{3}+\frac {3 a^{2} b e \,x^{4}}{4}+\frac {3 a \,b^{2} c \,x^{5}}{5}+\frac {a \,b^{2} d \,x^{6}}{2}+\frac {3 a \,b^{2} e \,x^{7}}{7}+\frac {b^{3} c \,x^{8}}{8}+\frac {b^{3} d \,x^{9}}{9}+\frac {b^{3} e \,x^{10}}{10}+a^{3} d \ln \left (x \right )\) \(110\)
risch \(-\frac {a^{3} c}{x}+a^{3} e x +\frac {3 a^{2} b c \,x^{2}}{2}+a^{2} b d \,x^{3}+\frac {3 a^{2} b e \,x^{4}}{4}+\frac {3 a \,b^{2} c \,x^{5}}{5}+\frac {a \,b^{2} d \,x^{6}}{2}+\frac {3 a \,b^{2} e \,x^{7}}{7}+\frac {b^{3} c \,x^{8}}{8}+\frac {b^{3} d \,x^{9}}{9}+\frac {b^{3} e \,x^{10}}{10}+a^{3} d \ln \left (x \right )\) \(110\)
norman \(\frac {a^{3} e \,x^{2}+a^{2} b d \,x^{4}-c \,a^{3}+\frac {1}{8} b^{3} c \,x^{9}+\frac {1}{9} b^{3} d \,x^{10}+\frac {1}{10} b^{3} e \,x^{11}+\frac {3}{5} a \,b^{2} c \,x^{6}+\frac {1}{2} a \,b^{2} d \,x^{7}+\frac {3}{7} a \,b^{2} e \,x^{8}+\frac {3}{4} a^{2} b e \,x^{5}+\frac {3}{2} a^{2} x^{3} b c}{x}+a^{3} d \ln \left (x \right )\) \(114\)
parallelrisch \(\frac {252 b^{3} e \,x^{11}+280 b^{3} d \,x^{10}+315 b^{3} c \,x^{9}+1080 a \,b^{2} e \,x^{8}+1260 a \,b^{2} d \,x^{7}+1512 a \,b^{2} c \,x^{6}+1890 a^{2} b e \,x^{5}+2520 a^{2} b d \,x^{4}+3780 a^{2} x^{3} b c +2520 a^{3} d \ln \left (x \right ) x +2520 a^{3} e \,x^{2}-2520 c \,a^{3}}{2520 x}\) \(118\)

[In]

int((e*x^2+d*x+c)*(b*x^3+a)^3/x^2,x,method=_RETURNVERBOSE)

[Out]

-a^3*c/x+a^3*e*x+3/2*a^2*b*c*x^2+a^2*b*d*x^3+3/4*a^2*b*e*x^4+3/5*a*b^2*c*x^5+1/2*a*b^2*d*x^6+3/7*a*b^2*e*x^7+1
/8*b^3*c*x^8+1/9*b^3*d*x^9+1/10*b^3*e*x^10+a^3*d*ln(x)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.94 \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=\frac {252 \, b^{3} e x^{11} + 280 \, b^{3} d x^{10} + 315 \, b^{3} c x^{9} + 1080 \, a b^{2} e x^{8} + 1260 \, a b^{2} d x^{7} + 1512 \, a b^{2} c x^{6} + 1890 \, a^{2} b e x^{5} + 2520 \, a^{2} b d x^{4} + 3780 \, a^{2} b c x^{3} + 2520 \, a^{3} e x^{2} + 2520 \, a^{3} d x \log \left (x\right ) - 2520 \, a^{3} c}{2520 \, x} \]

[In]

integrate((e*x^2+d*x+c)*(b*x^3+a)^3/x^2,x, algorithm="fricas")

[Out]

1/2520*(252*b^3*e*x^11 + 280*b^3*d*x^10 + 315*b^3*c*x^9 + 1080*a*b^2*e*x^8 + 1260*a*b^2*d*x^7 + 1512*a*b^2*c*x
^6 + 1890*a^2*b*e*x^5 + 2520*a^2*b*d*x^4 + 3780*a^2*b*c*x^3 + 2520*a^3*e*x^2 + 2520*a^3*d*x*log(x) - 2520*a^3*
c)/x

Sympy [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.02 \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=- \frac {a^{3} c}{x} + a^{3} d \log {\left (x \right )} + a^{3} e x + \frac {3 a^{2} b c x^{2}}{2} + a^{2} b d x^{3} + \frac {3 a^{2} b e x^{4}}{4} + \frac {3 a b^{2} c x^{5}}{5} + \frac {a b^{2} d x^{6}}{2} + \frac {3 a b^{2} e x^{7}}{7} + \frac {b^{3} c x^{8}}{8} + \frac {b^{3} d x^{9}}{9} + \frac {b^{3} e x^{10}}{10} \]

[In]

integrate((e*x**2+d*x+c)*(b*x**3+a)**3/x**2,x)

[Out]

-a**3*c/x + a**3*d*log(x) + a**3*e*x + 3*a**2*b*c*x**2/2 + a**2*b*d*x**3 + 3*a**2*b*e*x**4/4 + 3*a*b**2*c*x**5
/5 + a*b**2*d*x**6/2 + 3*a*b**2*e*x**7/7 + b**3*c*x**8/8 + b**3*d*x**9/9 + b**3*e*x**10/10

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.87 \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=\frac {1}{10} \, b^{3} e x^{10} + \frac {1}{9} \, b^{3} d x^{9} + \frac {1}{8} \, b^{3} c x^{8} + \frac {3}{7} \, a b^{2} e x^{7} + \frac {1}{2} \, a b^{2} d x^{6} + \frac {3}{5} \, a b^{2} c x^{5} + \frac {3}{4} \, a^{2} b e x^{4} + a^{2} b d x^{3} + \frac {3}{2} \, a^{2} b c x^{2} + a^{3} e x + a^{3} d \log \left (x\right ) - \frac {a^{3} c}{x} \]

[In]

integrate((e*x^2+d*x+c)*(b*x^3+a)^3/x^2,x, algorithm="maxima")

[Out]

1/10*b^3*e*x^10 + 1/9*b^3*d*x^9 + 1/8*b^3*c*x^8 + 3/7*a*b^2*e*x^7 + 1/2*a*b^2*d*x^6 + 3/5*a*b^2*c*x^5 + 3/4*a^
2*b*e*x^4 + a^2*b*d*x^3 + 3/2*a^2*b*c*x^2 + a^3*e*x + a^3*d*log(x) - a^3*c/x

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.88 \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=\frac {1}{10} \, b^{3} e x^{10} + \frac {1}{9} \, b^{3} d x^{9} + \frac {1}{8} \, b^{3} c x^{8} + \frac {3}{7} \, a b^{2} e x^{7} + \frac {1}{2} \, a b^{2} d x^{6} + \frac {3}{5} \, a b^{2} c x^{5} + \frac {3}{4} \, a^{2} b e x^{4} + a^{2} b d x^{3} + \frac {3}{2} \, a^{2} b c x^{2} + a^{3} e x + a^{3} d \log \left ({\left | x \right |}\right ) - \frac {a^{3} c}{x} \]

[In]

integrate((e*x^2+d*x+c)*(b*x^3+a)^3/x^2,x, algorithm="giac")

[Out]

1/10*b^3*e*x^10 + 1/9*b^3*d*x^9 + 1/8*b^3*c*x^8 + 3/7*a*b^2*e*x^7 + 1/2*a*b^2*d*x^6 + 3/5*a*b^2*c*x^5 + 3/4*a^
2*b*e*x^4 + a^2*b*d*x^3 + 3/2*a^2*b*c*x^2 + a^3*e*x + a^3*d*log(abs(x)) - a^3*c/x

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.87 \[ \int \frac {\left (c+d x+e x^2\right ) \left (a+b x^3\right )^3}{x^2} \, dx=\frac {b^3\,c\,x^8}{8}-\frac {a^3\,c}{x}+\frac {b^3\,d\,x^9}{9}+\frac {b^3\,e\,x^{10}}{10}+a^3\,d\,\ln \left (x\right )+a^3\,e\,x+\frac {3\,a^2\,b\,c\,x^2}{2}+\frac {3\,a\,b^2\,c\,x^5}{5}+a^2\,b\,d\,x^3+\frac {a\,b^2\,d\,x^6}{2}+\frac {3\,a^2\,b\,e\,x^4}{4}+\frac {3\,a\,b^2\,e\,x^7}{7} \]

[In]

int(((a + b*x^3)^3*(c + d*x + e*x^2))/x^2,x)

[Out]

(b^3*c*x^8)/8 - (a^3*c)/x + (b^3*d*x^9)/9 + (b^3*e*x^10)/10 + a^3*d*log(x) + a^3*e*x + (3*a^2*b*c*x^2)/2 + (3*
a*b^2*c*x^5)/5 + a^2*b*d*x^3 + (a*b^2*d*x^6)/2 + (3*a^2*b*e*x^4)/4 + (3*a*b^2*e*x^7)/7